
Earth System Curator: Model
metadata and grid metadata

V. Balaji
Princeton University and NOAA/GFDL

ESG-CET Metadata Workshop
Berkeley CA

12 February 2007



The IPCC AR4 archive at PCMDI
The IPCC data archive at PCMDI is a truly remarkable resource for the comparative study of
models. Since it came online in early 2005, it has been a resource for ∼300 scientific papers
aimed at providing consensus and uncertainty estimates of climate change, from ∼20 state-of-
the-art climate models worldwide.

This figure, from Held
and Soden (2005), is
a composite across the
entire IPCC archive.

Computational load at GFDL:
• 5500 model years run.
• Occupied half of available compute cycles at GFDL

for half a year (roughly equivalent to 1000 Altix pro-
cessors).

• 200 Tb internal archive; 40 Tb archived at GFDL data
portal; 4 Tb archived at PCMDI data portal.

1



Can an experiment like IPCC be run at higher

resolution?
Possible key challenges for the next IPCC:

• Robust estimates of regional climate change.

• Interactive carbon dynamics: inclusion of land-use change, ocean carbon uptake, marine
and terrestrial biospheric response to climate change.

• Increased resolution in the atmosphere
(even before we get to cloud-resolving
scales) will lead to better characterization
of storm track changes and hurricane in-
tensity projections in a changed climate.
Target: 1◦or 0.5◦model for IPCC AR5.

• Increased resolution in the ocean is
even more critical: key mechanisms
of ocean mass and energy transport
are currently unresolved. Targets:
0.25◦(“eddy-permitting”) models next time
around, 0.0825◦(“eddy-resolving”) still out
of reach.

2



Rationale for a model metadata standard
• Future projections of climate are performed at many sites, and a key goal of current re-

search is to reduce the uncertainty of these projections by understanding the differences
in the output from different models.

• This comparative study of climate simulations (e.g IPCC) across many models has
spawned efforts to build uniform access to output datasets from major climate models, as
well as modeling frameworks that will promote uniform access to the models themselves.

Experience from the international modeling campaigns such as IPCC indicates that many of the
descriptions of model output being sought by data consumers are present in the configuration
files for models that are used by data producers.

ESC begins with a crucial insight: that the descriptors used for comprehensively specifying a
model configuration are needed for a scientifically useful description of the model output data
as well. Thus the same attributes may be used to specify a model as well as the model
output dataset: thus leading to a convergence of models and data.

A curator is a software entity that unites key aspects of modeling frameworks (such as ESMF
and PRISM) with data frameworks such as ESG, to make it possible for a query trail to lead from
models to datasets, or back.

3



ESC: areas of activity

• Supplementing grid standards for mosaic grids (see below)

• Generalization of existing model schema for a broader range of applications

• Model assembly (vs. model description for understanding datasets, the
NMM focus) and schema for end-to-end modeling workflows

• Compatibility checking and automatic coupler generation for ESMF applica-
tions

• General strategies for aggregation of schema

4



Curator schema pieces
• Curator-NMM

• Curator-Complete

• Grid Spec

plus ...

• NMM/PRISM PMIOD and SMIOC

• FMS Runtime Environment

• CF

plus ...

• schema aggregation strategy

5



Curator-NMM
• Based on NMM from the University of Reading

– discovery metadata for common queries on IPCC model output: model provenance,
physical and technical properties, including grid metadata.

– builds in specific locations in metadata where extensible controlled vocabularies might
be useful: e.g extension of CF standard names into a set of standard grid descriptors,
component types, etc.

• Curator-NMM will be a superset of NMM

– Component architecture

– Coupling specification

6



Component Architecture Schema
• Identify and locate all of the software components needed to construct and run a model.

• Identify and locate any external software frameworks, libraries, or packages required to
construct and run a model.

• Identify which component sets can potentially define data exchanges (couplings).

• Identify components that are defined as composites of other components, and thus require
other components to execute.

• Identify which components will run in the same executables and which will run in separate
executables.

7



Component Architecture Schema: constructs

Major constructs:

• PotentialModel (proposed new name for NMM Codebase)

• Component

• Framework

Once configured with technical and coupling specifications, the PotentialModel
becomes the NMM Model.

8



Component Architecture Schema; features
• Designed to facilitate model assembly (not data description), working towards automation

• Handles components within components

• Handles models associated with multiple frameworks, for combined use or alternate use of
frameworks

• Handles multiple levels of couplers in the same model

• Handles models containing components that originate from distributed groups

• Most information is stored at the component level

• Components each have their own schema so they can be considered in different contexts

• Frameworks have their own schema

9



Component Architecture Schema: status
• Major constructs emerging and close to being finalized with collaborators

• Suitable for experimentation as a prototype

• Many details TBD

• Being used to describe components and frameworks stored in a CDP-Curator catalog
where components can be browsed, uploaded, downloaded

• Coupling specification

– will be based on PMIOD/SMIOC files

– These need to be reviewed for generality beyond PRISM (MAPL project will be one
such prototype)

– Curator has not done this yet! (next on the list...)

10



Curator-Complete

• Generalization of FMS Run-time Environment (FRE)

• Generalized schema is called Curator Run-time Environment (CRE)

• Intended for use at Curator Satellite Site - sites with Curator tools for model
assembly, run and postprocessing (with a focus on prepping data for com-
parative multi-institutional modeling campaigns)

11



Schema aggregation
• Workflow environments need to use multiple conventions/schema

• There are no overarching conventions for schema interaction

• We will propose to GO-ESSP the publication of a table of resolvable namespaces and
information relating to current metadata projects (a metadata metadata table)

• Information for this table, and for schema term definitions, would be encoded in the schema
themselves

• XSLT would be used to generate tables, glossaries, and other shared resources (premature
for RDF/OWL?)

• We have some early examples and are working to improve them

12



Rationale for a grid metadata standard

Experience from the international modeling campaigns such as IPCC indicates
that there is a wide diversity in the model grids used; and further, it appears that
this diversity is only increasing.

However, in the absence of a standard representation of grids, it has been rather
difficult to perform comparative analyses of data from disparate model grids.

Modeling centers generally develop some site-specific representation of grids for
internal use. As models and model components move toward interoperability, it
becomes necessary to develop a common representation of model grids.

We propose here standard metadata for grid description that serves the needs
of both coupled models and data analysis.

13



Grid metadata: requirements
• the standard will describe the grids commonly used in Earth system models from global

scale to fine scale, and also with an eye looking forward (toward emerging discrete repre-
sentations) and sideways (to allied research domains: space weather, geosciences);

• the standard will contain all the information required to enable commonly performed sci-
entific analysis and visualization of data, including differential and integral operations on
scalar and vector fields;

• the standard will contain all the information required to perform transformations from one
model grid to another, satisfying constraints of conservation and preservation of essential
features, as science demands (e.g variance conservation, streamline preservation);

• the standard will make possible the development of shared regridding software, varying
from tools deployable as web services to perform on-the-fly regridding from data archives,
to routines to be used within coupled models. It will enable, but not mandate, the use of
these standard techniques.

The standard is specifically being proposed for inclusion in the CF standard. The examples here
show it in CDL; but it is also available as a schema.

14



Gridspec within the metadata hierarchy
Application metadata experiment, scenario,

institution, contact: currently covered by
CF/CMOR.

Component metadata physical and technical
description of component and its input
and configuration parameters. Currently
covered by CMOR, but as free-form text.

Coupler metadata export and import fields,
interpolation methods. Currently cov-
ered by OASIS4 XML, but not exported
to model output. Associated with an
XGrid: unstructured grid for fractions and
masks. May contain a physical compo-
nent (e.g surface boundary layer).

Application

Component ComponentCoupler

Grid GridXGrid

Field Field Field

Field Field Field

Grid metadata geospatial information somewhat covered by CF, but bundled with fields; draft proposal for struc-
tural metadata in the works, being negotiated within PRISM, ESMF and GO-ESSP communities, will be
proposed as a draft CF standard in 2006.

Field metadata covered by CF/CMOR standard variable name table. Many output fields do not (and should not)
have standard names. In general, all metadata categories should allow both standard and bespoke elements.

15



Grid metadata: what’s included
We have chosen two classes of operations that the grid standard must enable: vector calculus,
differential and integral operations on scalar and vector fields; and conservative regridding,
the transformation of a variable from one grid to another in a manner that preserves chosen
moments of its distribution, such as area and volume integrals of 2D and 3D scalar fields. We
recognize that higher-order methods that preserve variances or gradients may entail some loss
of accuracy. In the case of vector fields, grid transformations that preserve streamlines are
required.

To enable vector calculus and conservative regridding, the following aspects of a grid must be
included in the specification:

• distances between gridpoints, to allow differential operations;

• angles of grid lines with respect to a reference, usually geographic East and North, to
enable vector operations. One may also choose to include an arc type (e.g “great circle”),
which specifies families of curves to follow while integrating a grid line along a surface.

• areas and volumes for integral operations. This is generally done by defining the bound-
aries of a grid cell represented by a point value. Below we will also consider fractional
areas and volumes in the presence of a mask, which defines the sharing of cell between
two or more components.

16



Discretization

The most commonly used discretization in Earth
system science is logically rectangular.
A discretization is logically rectangular if the coor-
dinate space (x, y, z) is translated one-to-one to
index space (i,j,k) . Note that the coordinate
space may continue to be physically curvilinear;
yet, in index space, grid cells will be rectilinear
boxes.
Beyond the simplest logically rectangular grids
(e.g lon-lat) we may include more specialized
grids such as the tripolar grid (Murray 1996,
Griffies et al 2004) and the cubed-sphere grid
(Ran cic and Purser 1996).

17



Triangular discretization

Triangular discretizations are increas-
ingly voguish in the field. A struc-
tured triangular discretization of an
icosahedral projection is a popular new
approach resulting in a geodesic grid
(Majewski et al 2002, Randall et al
2001).
Numerically generated unstructured
triangular discretization is sometimes
used, especially over complex terrain.

18



Grid discretizations: a taxonomy

A reasonably complete taxonomy of grid discretiza-
tions for the near- to mid-future in Earth System sci-
ence would include:
LRG logically rectangular grid.
STG structured triangular grid.
UTG unstructured triangular grid.
UPG unstructured polygonal grid.
PCG pixel-based catchment grids: gridboxes made up

of arbitrary collections of contiguous fine-grained
pixels, usually used to demarcate catchments
defined by surface elevation isolines.

EGG Escher gecko grid.

While developing a vocabulary and placeholders for all of the above, we shall focus here princi-
pally on logically rectangular discretizations. We expect the specification to be extended to other
discretization types by the relevant domain experts.

Actual grids may be constructed as a grid mosaic composed of grid tiles.

19



Staggering and supergrids

vT vT vT vT-U
6
V

v
6

U-

V

v
6

U-

V

v
6

U-

V

v
6

U-

V

v -U v -U

v
6
V

v
6
V

v
6
V

v
6
V

v -U

v -U

A B C D

Algorithms place quantities at different locations within a grid cell (“staggering”). This has led
to considerable confusion in terminology and design: are the velocity and mass grids to be
constructed independently, or as aspects (“subgrids”) of a single grid? How do we encode the
relationships between the subgrids, which are necessarily fixed and algorithmically essential?

In this specification, we dispense with subgrids, and instead invert the specification: we define
a supergrid . The supergrid is an object potentially of higher refinement than the grid that an
algorithm will use; but every such grid needed by an application is a subset of the supergrid.

20



Triangular supergrids
Triangular grid algorithms also use concepts like cell-, face- or vertex-centered quantities, which
can be encapsulated within a supergrid.

I would like to get ideas at this meeting about implementing supergrids for totally unstructured
grids...

21



What is a grid mosaic?

On the left is a basic 4×4 tile; on the right
are examples of grids composed of a mosaic
of such tiles. The first is a continuous grid,
below is a ref ined grid.

Most current software only supports what we call grid tiles
here. The grid mosaic extension will allow the develop-
ment of more complex grids for next-generation models.
First in our (GFDL’s) sights is the cubic sphere, primar-
ily targeted at a next-generation finite-volume atmospheric
dynamical core, but potentially others as well.
Further developments will include support for irregular tiling
(e.g of the ocean surface following coastlines), and for
refined, nested and adaptive grids.
Also, regular grids where an irregular decomposition is
needed (e.g for a polar filter) can use mosaics to define
different decompositions in different regions.

Refined grid mosaic.

Regular grid mosaic.

22



Boundaries and contact regions

Aside from the grid information in the grid tiles, the grid mosaic
additionally specifies connections between pairs of tiles in the
form of contact regions between pairs of grid tiles.
Contact regions can be boundaries, topologically of one di-
mension less than the grid tiles (i.e, planes between volumes,
or lines between planes), or overlaps, topologically equal in di-
mension to the grid tile. In the cubed-sphere example the con-
tact regions between grid tiles are 1D boundaries: other grids
may contain tiles that overlap. In the example of the yin-yang
grid (Kageyama et al 2004) the grid mosaic contains two grid
tiles that are each lon-lat grids, with an overlap. The overlap is
also specified in terms of a contact region between pairs of
grid tiles. Issues relating to boundaries are described below.
Overlaps are described in terms of an exchange grid, more on
which below.

23



Applications of grid mosaics
The grid mosaic is a powerful abstraction making possible an entire panoply of applications.
These include:

• the use of overset grids such as the yin-yang grid;

• the representation of nested grids (e.g Kurihara et al 1990);

• the representation of reduced grids (e.g Rasch 1994). Currently these typically use full
arrays and a specification of the “ragged edge”. A reduced grid can instead be written as a
grid mosaic where each reduction appears as a separate grid tile.

• An entire coupled model application or dataset can be constructed as a hierarchical mosaic.
Grid mosaics representing atmosphere, land, ocean components and so on, as well as
contact regions between them, all can be represented using this abstraction. This approach
is already in use at many modeling centres including GFDL, though not formalized.

• Finally, grid mosaics can be used to overcome performance bottlenecks associated with
parallel I/O and very large files. Representing the model grid by a mosaic permits one
to save data to multiple files, and the step of aggregation is deferred. This approach
is already used at GFDL to perform distributed I/O from a parallel application, where I/O
aggregation is deferred and performed on a separate I/O server sharing a filesystem with
the compute server.

24



Representing the grid vocabulary in CF
• a standard grid specification dataset (or gridspec) expressed in netCDF or XML. The grid

specification is comprehensive and is potentially a very large file. Keywords maybe used in
a succinct description from which the complete gridspec is readily reconstructed.

• the current CF spec covers single grid tiles: we have tried to remain close to that spec to
preserve legacy data.

• an extended family of CF standard names for grid specification;

• netCDF and CF currently assume that all information is present in a single f ile, already
a flawed assumption (long time series, vector fields). We propose here a mechanism for
storing a CF-compliant dataset in multiple f iles, and for preserving (or at least verifying)
integrity of a multi-file dataset. Fields discretized on a grid mosaic may be held in multiple
files.

• Grid metadata is stored below experiment and model metadata. Datasets holding physical
variables acquire the gridspec by reference.

• The gridspec is a work in progress, and is designed for extensibility. We expect to see
considerable evolution in the near term. It is therefore liberally sprinkled with version
metadata.

25



Summary: an extended gridspec for CF
• We propose a new grid specification standard for CF. It can be expressed in netCDF-3, 4,

or XML.

• The specification of a grid tile is consistent with the current CF gridspec, but extends it by
defining the supergrid and staggering. Current netCDF-3 data files need not change but
for the addition of a few attributes.

• The definition of a grid mosaic is new. Among other things, the mosaic specification can
help widen the parallel I/O and filesize bottlenecks.

• The grid specification is maintained separately from the dataset, which links to it. Integrity
of linkages between files is maintained by a LinkSpec.

• If the gridspec file is standardized, it can be used for model input as well as output. For
coupled or nested models, this file also contains the necessary data to relate component
grid mosaics.

26



Current status
• currently being prototyped at GFDL and UKMO, under consideration by WRF and GMAO;

• netCDF examples and a set of programs for generating them available from GFDL: covers
LRGs: regular lon-lat, tripolar and cubed-sphere, includes tools for computing overlaps for
conservative regridding up to second-order.

• Analysis and vis tools prototypes under development (Ferret, NcVTK)

• to be proposed to CF in a series of linked proposals (geometry and coordinate systems;
supergrids and staggering; mosaics, boundaries and overlaps; exchange grids and masks.

• Tools to become capable of applying standard and bespoke regridding techniques.

• PRISM/ESMF to agree to produce compliant data.

27



Collaboration between ESC and ESG

• ESC metadata is designed to be embedded in component models and easy
to generate from coupled applications

• ESC metadata is a superset of metadata needed to answer common queries
about model output: placeholders for controlled vocabularies as they emerge

• While ESC’s scope is not limited to multi-institutional modeling campaigns,
it should be easy to generate metadata tailored to any such campaign from
ESC metadata (e.g for harvesting for IPCC AR5 data centers)

• data producers such as GFDL participate in several such campaigns and
would like to generate compliant metadata for all of them as painlessly as
possible.

28



Metadata management
• project metadata is specified by the coordinators of a ”campaign”. In the case of IPCC that

would be PCMDI. They would construct CMOR variable tables and such based upon input
from scientists (data consumers). The consumers would also tell us what formats to use,
whether point or station data is needed, what level of grid diversity is acceptable.

• model metadata is saved at the component level by the model developers, at the application
level by model integrators (data producers). This includes grid metadata. In the case of
FMS, that would be us (GFDL), following Curator schema.

• metadata mapping the above down to the storage level would be maintained by data frame-
works such as ESG.

All 3 levels of metadata would need to be expressible in Curator-complete.

The ”owner” of the level of metadata should be charged with schema specification for that
level.

29



Questions?

30



Extra slides

31



Geometry and coordinate systems

The underlying geometry is often a sphere or thin spherical shell. This may
be a problem when geo-referencing to very precise datasets that consider the
surface as a geoid. However, more idealized studies may use geometries that
simplify the rotational properties of the fluid, such as an f -plane or β-plane, or
even simply a cartesian geometry.

Where the actual Earth or planetary system is being modeled, geospatial map-
ping or geo-referencing is used to map model coordinates to standard spatial
coordinates, usually geographic longitude and latitude. Vertical mapping to
pre-defined levels (e.g height, depth or pressure) is also often employed as a
standardization technique when comparing model outputs to each other, or to
observations.

32



Vertical coordinate

The vertical coordinate can be space-based (height or depth with respect to
a reference surface) or mass-based (pressure, density, potential temperature).
Hybrid coordinates with a mass-based element are considered to be mass-
based.

The reference surface is a digital elevation map of the planetary surface. This
can be a detailed topography or bathymetry digital elevation dataset, or a more
idealized one such as the representation of a single simplified mountain or ridge,
or none at all. Vertical coordinates requiring a reference surface are referred to
as terrain-following. Both space-based (e.g Gal-Chen, ζ) and mass-based (e.g
σ) terrain-following coordinates are commonly used.

The rationale for developing this minimal taxonomy to classify vertical coordi-
nates is that translating one class of vertical coordinate into another is generally
model- and problem-specific, and should not be attempted by standard regrid-
ding software.

33



Horizontal coordinate

Horizontal spatial coordinates may be polar (θ,φ) coordinates on the sphere, or
planar (x,y), where the underlying geometry is cartesian, or based on one of
several projections of a sphere onto a plane. Planar coordinates based on a
spherical projection define a map factor allowing a translation of (x,y) to (θ,φ).

Curvilinear coordinates may be used in both the polar and planar instances,
where the model refers to a pseudo-longitude and latitude, that is then mapped
to geographic longitude and latitude by geo-referencing. Examples include the
displaced-pole grid and the tripolar grid.

Horizontal coordinates may have properties such as orthogonality (when the Y

coordinate is normal to the X) and uniformity (when grid lines in either direction
are uniformly spaced). Numerically generated grids may not be able to satisfy
both constraints simultaneously. These properties are used as keywords in the
gridspec.

Other coordinate types: spectral, generalized Galerkin methods.

34



Staggered grid arrays

uu-

u
6

uu-

u
6

uu-

u
6

uu-

u
6

uu-

u
6

uu-

u
6

uu-

u
6

uu-

u
6

uu-

u
6

uu-

u
6

uu-

u
6

uu-

u
6

uu-

u
6

uu-

u
6

uu-

u
6

uu-

u
6

u
6

u
6

u
6

u
6

u-

u-

u-

u-
Shown at left is a supergrid with 9×9 vertices.
Interpreted as an Arakawa C-grid, the actual grid con-
tains 4×4 grid cells, with face-centered normal veloci-
ties.
Scalar arrays on this grid are 4×4; if velocity arrays
are also 4×4, the staggering is biased in some direc-
tion, e.g a northeast-biased staggered grid means that
the array value u(i,j) represents the point ui+1

2
j. A

symmetric array contains an extra point: e.g a 5×4 ar-
ray for U . A standard vocabulary for staggered grid
arrays is used below.

35



Grid mosaic definition

A grid mosaic is constructed recursively by re-
ferring to child mosaics, with the tree terminat-
ing in leaves defined by grid tiles.
(There is a very useful analogy to be made be-
tween mosaic hierarchies and the component
hierarchies we have been talking about in the
NMM/ESC context).

��
��
M

��
��
M ��

��
M ��

��
M

G G

G G

It is not necessarily possible to deduce contact regions by geospatial mapping: there can be
applications where geographically collocated regions do not exchange data, and also where
there is implicit contact between non-collocated regions.

36



Boundary spec for a cubed sphere
Boundaries for LRG tiles are
specified in terms of an anchor
point and an orientation.
An anchor point is a bound-
ary point that is common to the
two grid tiles in contact. When
possible, it is specified as in-
tegers giving index space loca-
tions of the anchor point on the
two grid tiles. When there is
no common grid point, the an-
chor point is specified in terms
of floating point numbers giving
a geographic location.
The orientation of the bound-
ary specifies the index space
direction of the running bound-
ary on each grid tile: the point
just to the “west” of (5,6) is in
fact (3,4)

z

z

37



Overlap contact regions: the exchange grid

• A grid is defined as a set of cells
created by edges joining pairs of
vertices defined in a discretiza-
tion.

• An exchange grid is the set of
cells defined by the union of all the
vertices of the two parent grids,
and a fractional area with re-
spect to the parent grid cell.

Atmosphere

Exchange

Land

An

El

Lm

• Exchange: interpolate from source grid using one set of fractional areas; then average onto
the target grid using the other set of fractional areas.

• Consistent moment-conserving interpolation and averaging functions of the fractional area
may be employed.

38



Overlap contact regions: masks
Complementary components: in Earth system models, a typical example is that of an ocean
and land surface that together tile the area under the atmosphere.

Land-sea mask as discretized on the
two grids, with the cells marked L be-
longing to the land. Certain exchange
grid cells have ambiguous status: the
two blue cells are claimed by both land
and ocean, while the orphan red cell is
claimed by neither. Land Ocean Exchange

L

L L L

Therefore the mask defining the boundary between complemen tary grids can only be
accurately defined on the exchange grid.

In the FMS exchange grid, by convention (and because it is easier) we generally modify the land
grid as needed. We add cells to the land grid until there are no orphan “red” cells left on the
exchange grid, then get rid of the “blue” cells by clipping the fractional areas on the land side.

39



CF: GridMosaicSpec

dimensions:
nfaces = 6;
ncontact = 12;
string = 255;

variables:
char mosaic(string);
char gridfaces(nfaces,string);
char contacts(ncontact,string);

mosaic = "AM2C45L24";
mosaic:standard_name = "grid_mosaic_spec";
mosaic:mosaic_spec_version = "0.2";
mosaic:children = "gridfaces";
mosaic:contact_regions = "contacts";
mosaic:grid_descriptor = "C45L24 cubed_sphere";

gridfaces =
"Face1",
"Face2",
"Face3",
"Face4",
"Face5",
"Face6";

contacts =
"AM2C45L24:Face1::AM2C45L24:Face2",...
"AM2C45L24:Face5::AM2C45L24:Face6"; (1)

40



CF: GridMosaicSpec
• The grid mosaic spec is identified by a unique string name which qualifies its interior

namespace. Its children can be mosaics or grid tiles. Contact regions are specified be-
tween pairs of grid tiles only, using the fully qualified grid tile spec mosaic:mosaic:...:tile.

• The grid descriptor is an optional text description of the grid that uses commonly used
terminology, but may not in general be a sufficient description of the field (many grids
are numerically generated, and do not admit of a succinct description). Examples of grid
descriptors include:

– spectral_gaussian_grid

– regular_lon_lat_grid

– reduced_gaussian_grid

– displaced_pole_grid (different from a rotated pole grid: any grid could have a
rotated north pole);

– tripolar_grid

– cubed_sphere_grid

– icosahedral_geodesic_grid

– yin_yang_grid

41



CF: GridTileSpec

dimensions:
string = 255;
nx = 90;
ny = 90;
nxv = 91;
nyv = 91;
nz = 24;

variables:
char tile(string);
double area(ny,nx);

area:standard_name = "grid_cell_area";
area:units = "mˆ2";

double dx(ny+1,nx);
dx:standard_name = "grid_edge_x_distance";
dx:units = "metres";

double angle_dx(ny+1,nx);
angle_dx:standard_name =

"grid_edge_x_angle_WRT_geographic_east";
units = "radians";

char arcx(string);
arcx:standard_name = "grid_edge_x_arc_type";
arcx:north_pole = "0.0 90.0";

double zeta(nz); (2)

42



CF: GridTileSpec

arcx = "small_circle";
tile = "Face1";

tile:standard_name = "grid_tile_spec";
tile:tile_spec_version = "0.2";
tile:geometry: "spherical";
tile:north_pole: "0.0 90.0";
tile:projection: "cube_gnomonic";
tile:discretization = "logically_rectangular";
tile:conformal = "true"; (3)

43



CF: GridTileSpec georeferencing

variables:
float geolon(ny+1,nx+1);

geolon:standard_name = "geographic_longitude";
float geolat(ny+1,nx+1);

geolat:standard_name = "geographic_latitude";
float x_vertex(ny+1,nx+1);

x_vertex:standard_name = "grid_longitude";
x_vertex:coordinates = "geolon geolat";

float y_vertex(ny+1,nx+1);
y_vertex:standard_name = "grid_latitude";
y_vertex:coordinates = "geolon geolat"; (4)

The vertical geo-mapping is expressed by reference to “standard levels”.

44



Data files using the gridspec

dimensions:
nx = 46;
ny = 45;

variables:
int nx_u(nx);
int ny_u(ny);
float u(ny,nx);

u:standard_name = "grid_eastward_velocity";
u:staggering = "c_grid_symmetric";
u:coordinate_indices = "nx_u ny_u";

GLOBAL ATTRIBUTES:
gridspec = "/foo/gridspec.nc";

nx_u = 1,3,5,...
ny_u = 2,4,6,... (5)

Variables on a single grid tile can follow CF-1.0, with no changes.

The staggering field expresses what is implicit in the values of nx_u and ny_u . Possible values
of staggering include c_grid_symmetric , c_grid_ne and so on.

Using this information, it is possible to perform correct transformations, such as combining this
field with a V velocity from another file, transforming to an A-grid, and then rotating to geographic
coordinates.

45



CF: LinkSpec
• Links are directed and acyclic: e.g grid mosaic files point to constituent grid tile files, but

the “leaf” files do not point back.

• FIle descriptors may be URIs or pathnames. May be absolute or relative to a base address,
as in HTML.

• Timestamps and MD5 checksums are stored as attributes.

dimensions:
string = 255;

variables:
char base(string);
char external(string);
char local(string);

base = "http://www.gfdl.noaa.gov/CM2.1/";
base:standard_name = "link_base_path";

external = "foo.nc";
external:standard_name = "link_path";
external:md5_checksum = "g0bbl3dyg00k";
external:timestamp = "20060509T012800.33Z";

local = "/home/foo/bar.nc";
local:standard_name = "link_path";
local:link_spec_version = "0.2"; (6)

46



CF: GridContactSpec for a boundary

dimensions:
string = 255;

variables:
int anchor(2,2);

standard_name =
"anchor_point_shared_between_tiles";

char orient(string);
orient:standard_name =

"orientation_of_shared_boundary";
char contact(string);

contact:standard_name = "grid_contact_spec";
contact:contact_spec_version = "0.2";
contact:contact_type = "boundary";
contact:alignment = "true";
contact:refinement = "none";
contact:anchor_point = "anchor";
contact:orientation = "orient";

contact = "AM2C45L24:Face1::AM2C45L24:Face2";
orient = "Y:Y";
anchor = 90, 1, 1, 1; (7)

Cyclicity and the tripolar fold (orient = "X:-X" ) can both be expressed as a boundary of a
grid tile with itself.

47



CF: GridContactSpec for an overlap

dimensions:
string = 255;
ncells = 1476;

variables:
double frac_area(2,ncells);

standard_name =
"fractional_area_of_exchange_grid_cell";

int tile1_cell(2,ncells);
standard_name="parent_cell_indices";

int tile2_cell(2,ncells);
standard_name="parent_cell_indices";

char contact(string);
contact:standard_name = "grid_contact_spec";
contact:contact_spec_version = "0.2";
contact:contact_type = "exchange";
contact:fractional_area_field = "frac_area";
contact:parent1_cell = "tile1_cell";
contact:parent2_cell = "tile2_cell";

contact = "CM2:LM2::AM2C45L24:Face2"; (8)

48



From tiles to mosaics
If each tile is written out sep-
arately, current software is al-
ready capable of displaying re-
sults:

A computation that crosses
a tile boundary involves the
specification of contact re-
gions between tiles.
Contact regions cannot nec-
essarily be deduced from
geospatial information.

mosaic_version = 0.2
mosaic "atmos"

grid_type "cubed_sphere"
grid_mapping
tile "face1"...

mosaic "ocean"
grid_type "tripolar_grid"
grid_mapping
tile "tile"

contact_region "atmos:face1" "ocean:tile"
ncells
parent(ncells,2)
frac_area(ncells,2)
mask

(9)

49



Global grid attributes
gridspec version = string; Version of grid specification (e.g. “1.0”)

gridtype = string; Type of grid (e.g. “lrg”, ...)
history = string; Command history; (e.g. “gengrid latlon 180 90 0 -90”)

intend x refinement = integer; Intended grid (e.g. 2 would mean the grid was intended to
describe a coarser grid with half the points in the x-direction)

intend y refinement = integer; Intended grid(e.g. 4 would mean the grid was intended to
describe a coarser grid with quarter the points in the y-direction)

orthogonal = logical Orthogonal grid flag

50


